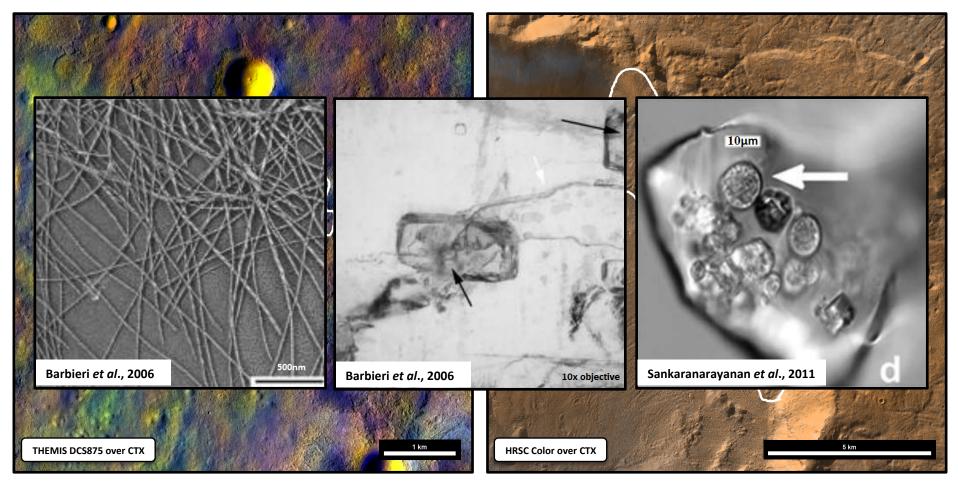

Western Noachis Terra Chloride Deposits Abstract #1021

Chlorides & Glacier-Like Forms (GLFs)

Chloride Deposits Based on *Osterloo et al.*, 2010


Glacier-Like Forms

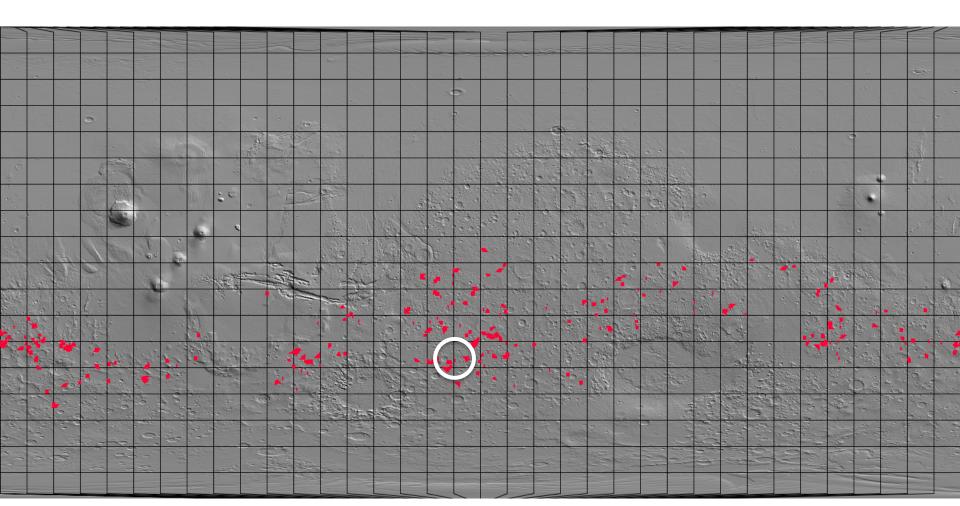
Based on Souness et al., 2012

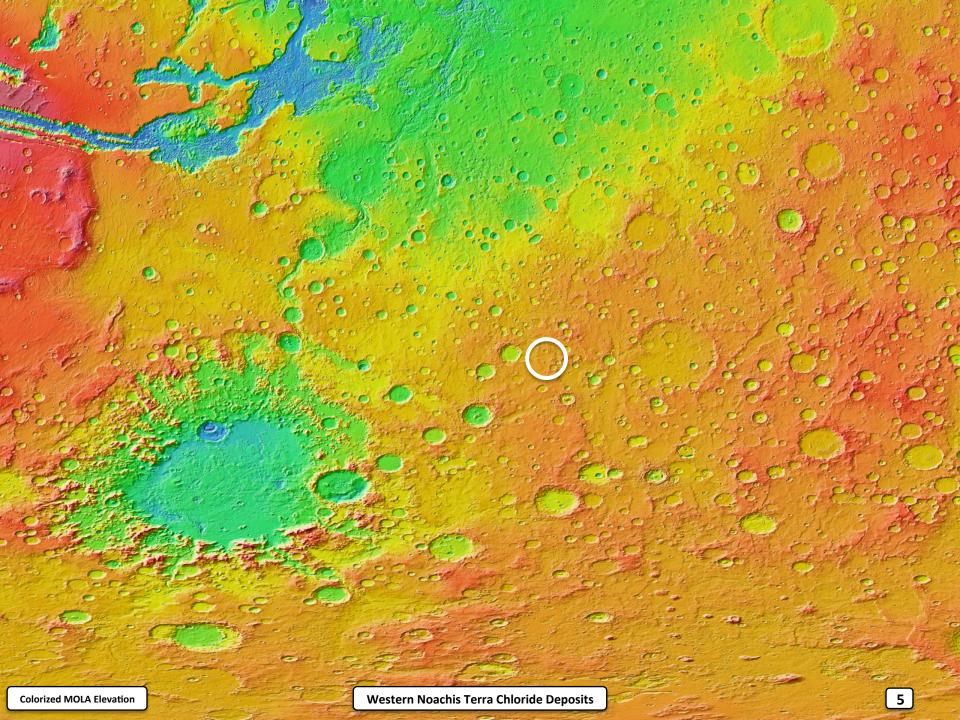
Chlorides & Glacier-Like Forms (GLFs)

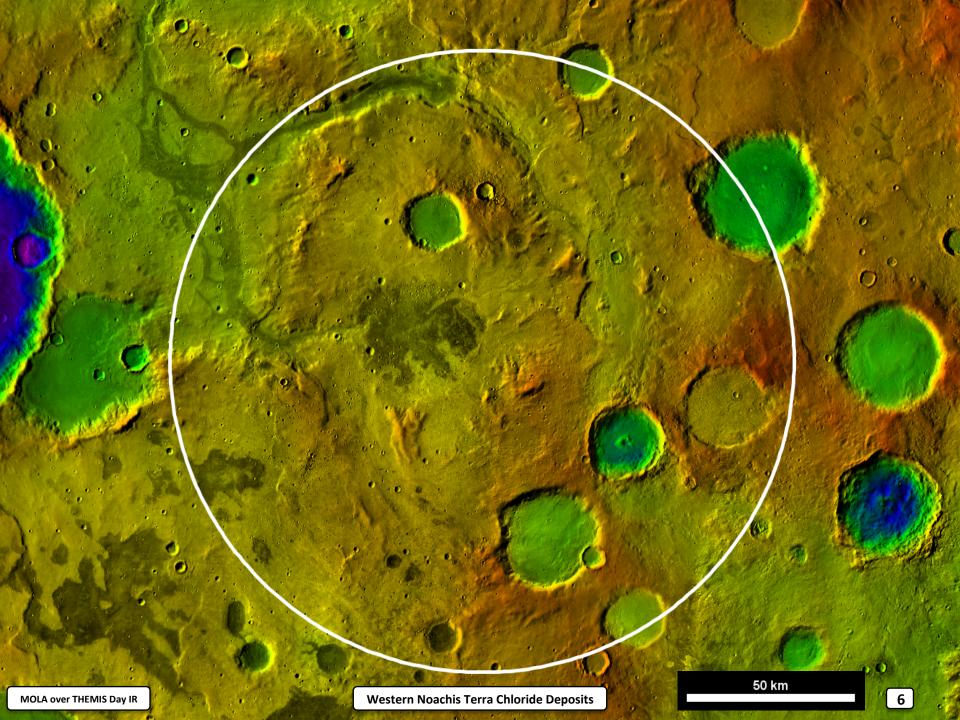
1st EZ Workshop for Human Missions to Mars

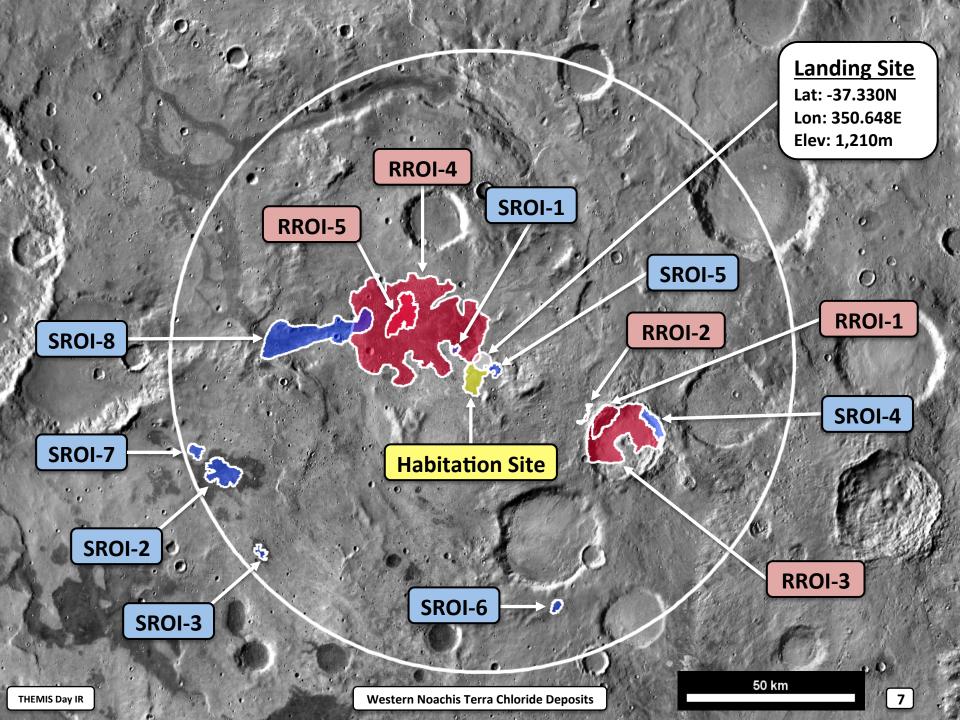
Chloride Deposits

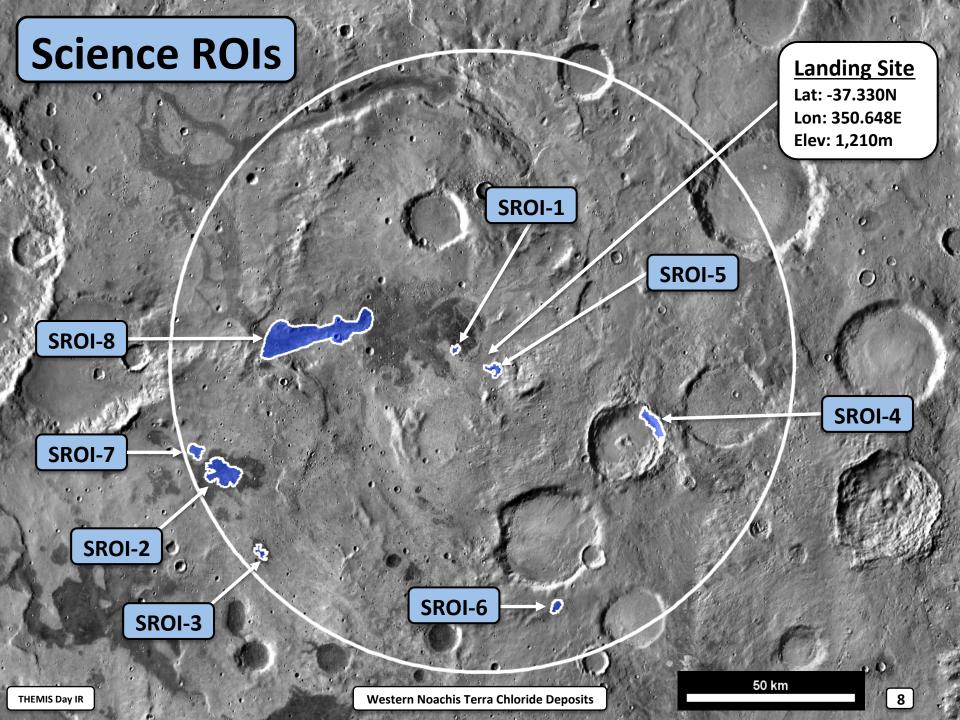
Based on Osterloo et al., 2010

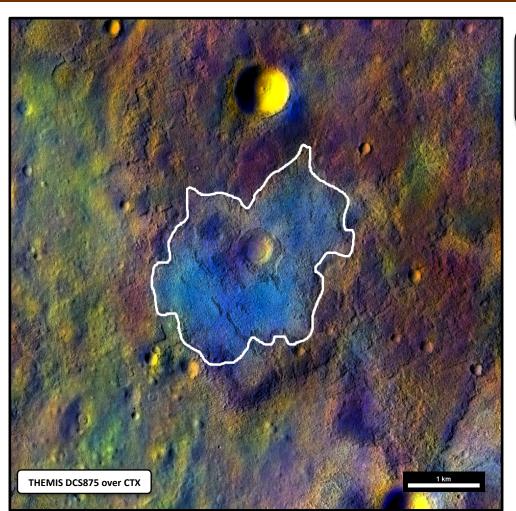

Glacier-Like Forms


Based on Souness et al., 2012


Global Chloride Distribution




1st EZ Workshop for Human Missions to Mars

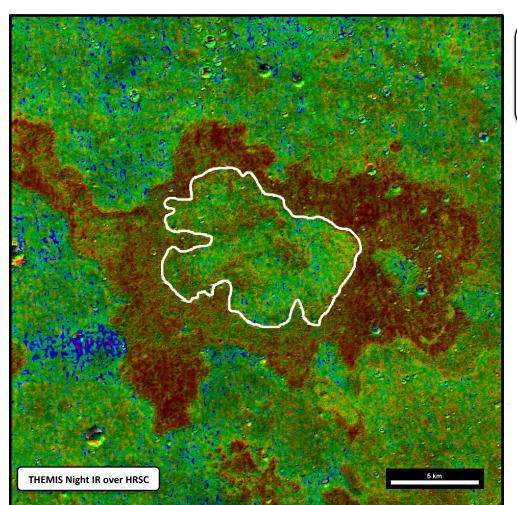


Science ROI 1: Chloride Deposit 1

1st EZ Workshop for Human Missions to Mars

Location: -37.267N, 350.467E

Elevation: 1,158m


Coverage: THEMIS, CTX

- Chloride mineral(s) deposit with high astrobiological preservation potential
- Basaltic unit with ~15% olivine abundance (TES spectra), likely phyllosilicates, possibly hydrated minerals

Science ROI 2: Chloride Deposit 2

1st EZ Workshop for Human Missions to Mars

Location: -37.922N, 348.905E

Elevation: 1,160m

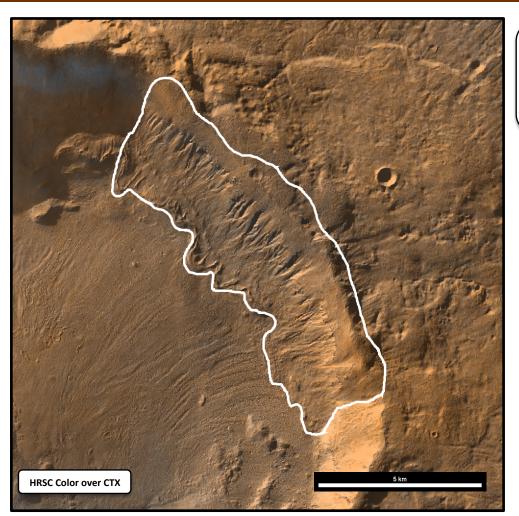
Coverage: THEMIS, CTX, HiRISE, CRISM

- Chloride mineral(s) deposit with high astrobiological preservation potential
- Basaltic unit with ~15% olivine abundance (TES spectra), phyllosilicates (CRISM) and possibly hydrated minerals (CRISM)

Science ROI 3: Chloride Deposit 3

1st EZ Workshop for Human Missions to Mars

Location: -38.347N, 349.141E


Elevation: 1,192m

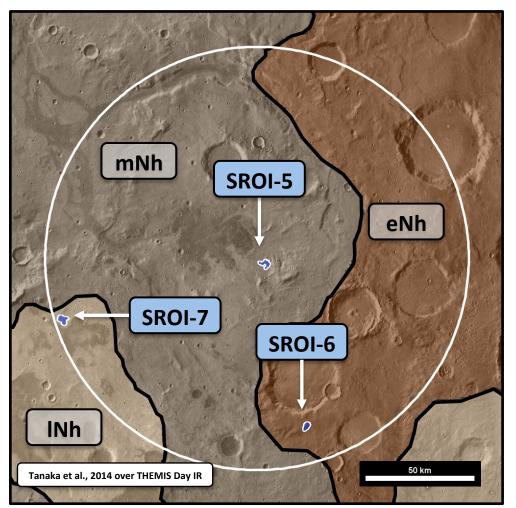
Coverage: THEMIS, CTX

- Chloride mineral(s) deposit with high astrobiological preservation potential
- Basaltic unit with ~15% olivine abundance (TES spectra), likely phyllosilicates, possibly hydrated minerals

Science ROI 4: Gullies and Potential RSL

1st EZ Workshop for Human Missions to Mars

Location: -37.823N, 351.823E

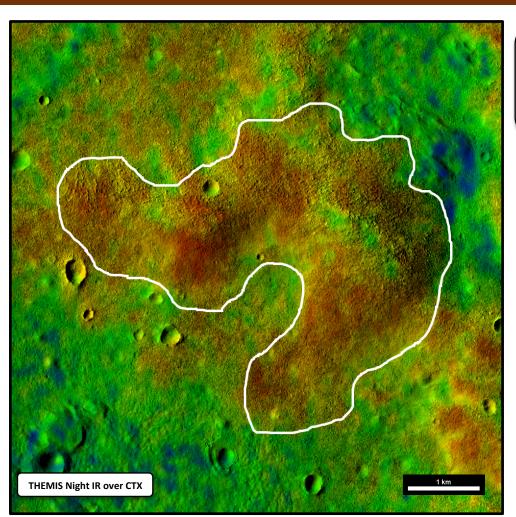

Elevation: 668m – 1,711m

Coverage: THEMIS, CTX, HiRISE, CRISM

- Gullies and glacier-like forms on northeastern crater rim
- Morphology similar to RSL-bearing crater rims
 - If RSLs, access to potentially habitable environment
 - If not, access to an RSL analog environment without planetary protection concerns

Science ROIs 5,6, & 7

eNh = Early Noachian Highlands

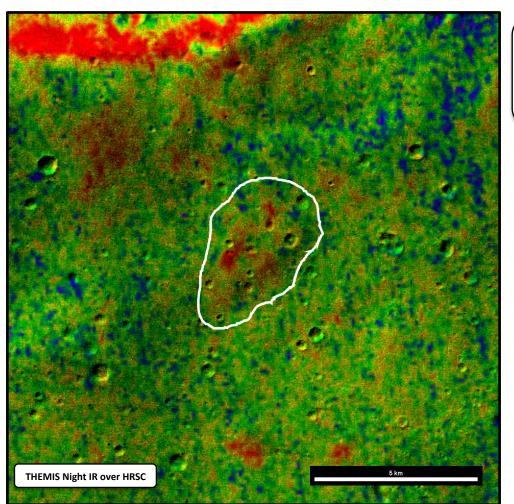

mNh = Middle Noachian Highlands

INH = Late Noachian
Highlands

Science ROI 5: Middle Noachian Material

1st EZ Workshop for Human Missions to Mars

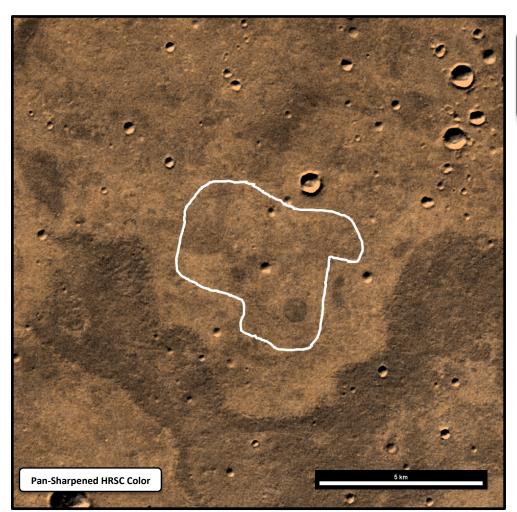
Location: -37.368N, 350.732E **Elevation:** 1,231m – 1,389m


Coverage: THEMIS, CTX

- High thermal inertia region with potential outcrops of middle Noachian material
- Lies partially within the proposed landing site

Science ROI 6: Early Noachian Material

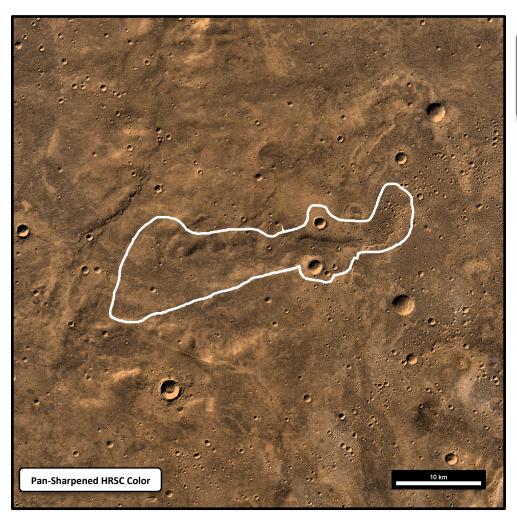
1st EZ Workshop for Human Missions to Mars


Location: -38.667N, 351.165E **Elevation:** 1,546m – 1,655m **Coverage:** THEMIS, HRSC

- Slightly higher thermal inertia region with potential outcrops of early Noachian material
- Remnant (negative) magnetic field based on MAG/ER measurements

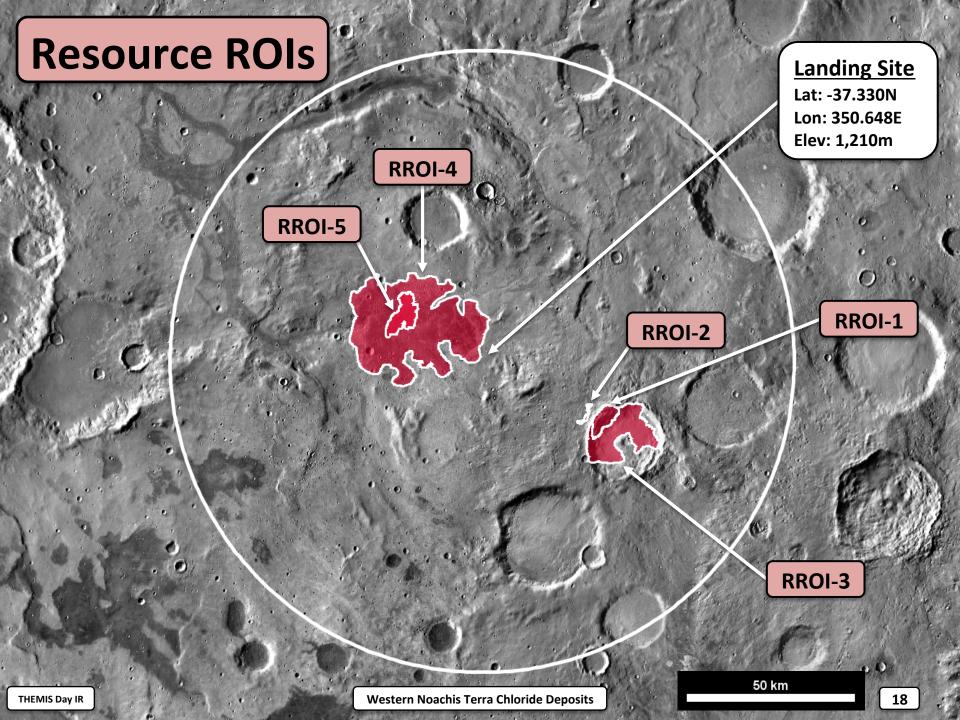
Science ROI 7: Late Noachian Material

1st EZ Workshop for Human Missions to Mars


Location: -37.817N, 348.699E **Elevation:** 1,192m – 1,217m **Coverage:** THEMIS, HRSC

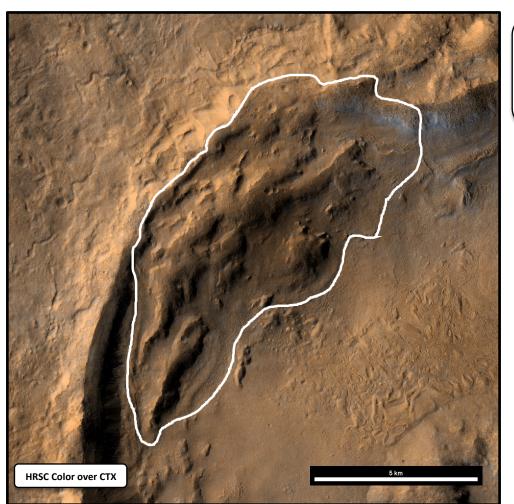
- Slightly higher thermal inertia region with potential outcrops of late Noachian material
- Remnant (positive) magnetic field based on MAG/ER measurements

Science ROI 8: Channel with Stratigraphy



1st EZ Workshop for Human Missions to Mars

Location: -37.184N, 349.537E **Elevation:** 1,105m – 1,204m **Coverage:** THEMIS, HRSC

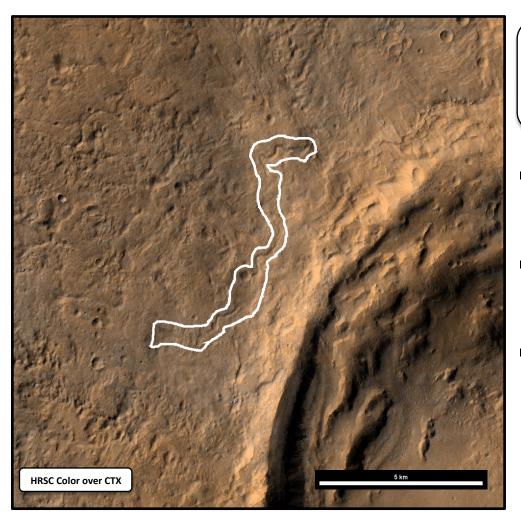

- Outflow channel from the basin containing the primary chloride deposit
- Stratigraphy likely exposed in the steep-walled sections of the channel

Resource ROI 1: Pasted Terrain

1st EZ Workshop for Human Missions to Mars

Location: -37.636N, 351.475E

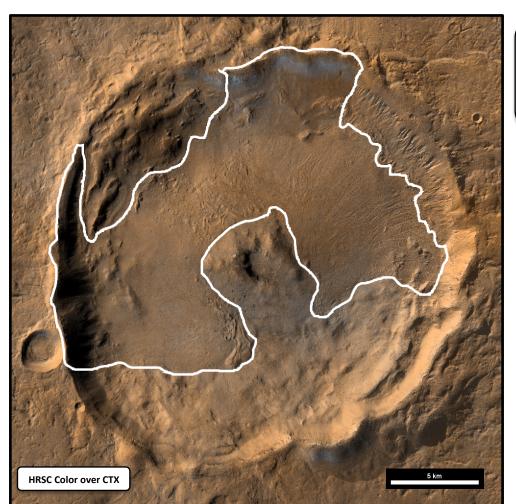
Elevation: 825m – 1,476m


Coverage: THEMIS, HRSC, CTX

- Residual ice under thin armor of dust/regolith on south-facing crater rim
- Patches closer to the rim are more accessible from the landing site

Resource ROI 2: Lineated Valley Fill

1st EZ Workshop for Human Missions to Mars


Location: -37.616N, 351.367E Elevation: 1,247m – 1,355m Coverage: THEMIS, HRSC, CTX

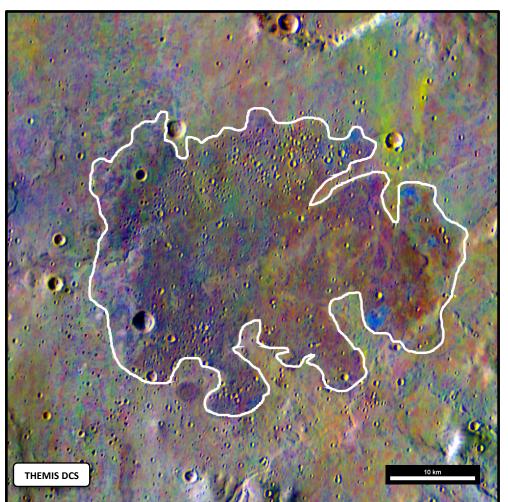
- Potential lineated valley fill in crater ejecta
- Could indicate additional subsurface water ice deposits
- More accessible than RROI-1, but more difficult to confirm due to lack of high resolution data

Resource ROI 3: Lineated Crater Fill

1st EZ Workshop for Human Missions to Mai

Location: -37.753N, 351.625E

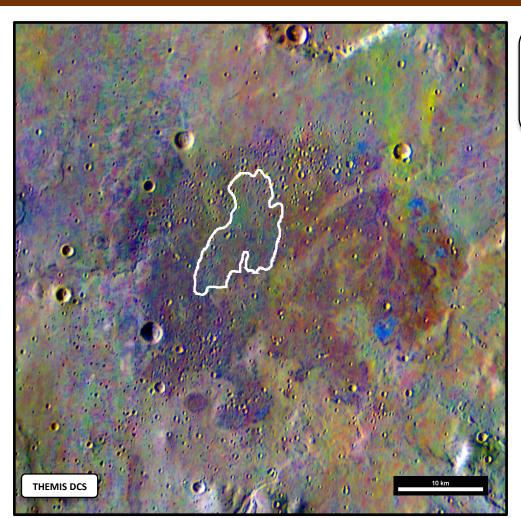
Elevation: 273m – 1,731m


Coverage: THEMIS, HRSC, CTX

- Subsurface ice under thin armor of dust/regolith on crater floor
- Appears similar to concentric crater fill, but is not continuous around the crater
- SHARAD profiles have been acquired over this deposit, but need analysis

Resource ROI 4: Olivine-Bearing Basalt

1st EZ Workshop for Human Missions to Mars


Location: -37.141N, 350.188E Elevation: 1,133m - 1,213m Coverage: THEMIS, HRSC, CTX

- Basaltic volcanic unit that appears to underlie the primary chloride deposit
- TES spectra show an ~15% olivine abundance, but Fo number not yet determined
- CRISM data expected to confirm presence of hydrated minerals

Resource ROI 5: Silica-Enriched Material

1st EZ Workshop for Human Missions to Mars

Location: -37.072N, 350.120E Elevation: 1,130m - 1,157m Coverage: THEMIS, HRSC, CTX

- Additional region of silica enrichment on the surface
- TES spectra indicate an ~25% abundance of a high-silica material

Science ROIs Rubric

1st FZ Work	shon f	or Human I	Missions to	Mar

														L	OIK	gricp	101	Hull	ian iviission	יט
	Site Factors						SROI-4	SROI-5	SROI-6	SROI-7	SROI-8	RROI-1	RROI-2	RROI-3	RROI-4	RROI-5	LS	HS	EZ SUM	
	oio	Threshold	Potential for past habitability	•	•	•													3,0	
	Astrobio	Tillesiloid	Potential for present habitability/refugia				0												0,1	İ
	As	Qualifying	Potential for organic matter, w/ surface exposure	•	•	•													3,0	
	nce	Threshold	Noachian/Hesperian rocks w/ trapped atmospheric gases	0	0	0		0	0	0	0				0	0	0	0	0,11	
	Science	Qualifying	Meteorological diversity in space and time	•	•	•	•				•	•	•	•		0			8,1	
	eric		High likelihood of surface-atmosphere exchange				0					0	0	0					0,4	
Criteria	Atmospheric		Amazonian subsurface or high-latitude ice or sediment				•					•	•	•					4,0	
ři	Atm		High likelihood of active trace gas sources	٠.	?	?	?	?	?	?	?	?	?:	?	?	?	?	?	?:	
Site (Threshold	Range of martian geologic time; datable surfaces	0	0	0		•	•	•				0	0	0	•	•	5,6	
			Evidence of aqueous processes	•	•	•	•				•		•						6,0	
) juc			Potential for interpreting relative ages	•	•	•	•				•				•	•			8,0	
Science	ce		Igneous Rocks tied to 1+ provinces or different times	•	•	•		•	•	•	•				•	•	•	0	10,0	
	cien		Near-surface ice, glacial or permafrost				0					•	0	•					2,2	
	Seos		Noachian or pre-Noachian bedrock units	0	0	0		•	•	•					0	0	•	•	5,5	
)	Qualifying	Outcrops with remnant magnetization						•	•									2,0	
			Primary, secondary, and basin-forming impact deposits	0	0	0							•		0	0			1,5	
			Structural features with regional or global context																0,0	
			Diversity of aeolian sediments and/or landforms	0	0	0									•				1,3	

Resource ROIs Rubric

0,1 0,4 5,4

9,1 7,2 1,0 2,0

0,0

10,2 4,5 5,5 5,0 5,0

1,0

5,0

4,1

5,0

5,0

4,1

									1000												
					3 4 5			200		1	st EZ	Wo	rksh	op fo	or H	uma	n Mi	ssio	ns to	Mars	
				Site Factors	SROI-1	SROI-2	SROI-3	SROI-4	SROI-5	SROI-6	SROI-7	SROI-8	RROI-1	RROI-2	RROI-3	RROI-4	RROI-5	rs	HS	EZ SUM	
	En	gineering		Meets First Order Criteria (Latitude, Elevation, Thermal Inertia)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15,0	
			D/ R	Potential for ice or ice/regolith mix				•					•	0	•					3,1	
921				A O	Potential for hydrated minerals	0	0	0									0	0			0,5
	ce			Quantity for substantial production				•					•	0	•					3,1	
	our	Threshold		Potential to be minable by highly automated systems				0					•	0	•					2,2	

				S	Š	Š	Š	S	S	S	S	2	R	2	R	
	En	gineering	Meets First Order Criteria (Latitude, Elevation, Thermal Inertia)	•	•	•	•	•	•	•	•	•	•	•	•	
		,eeg	Potential for ice or ice/regolith mix				•					•	0	•		
			Potential for ice or ice/regolith mix Potential for hydrated minerals	0	0	0									0	
	e e		Quantity for substantial production				•					•	0	•		
	Resource	Threshold	Potential to be minable by highly automated systems				0					•	0	•		
ש	esc		Located less than 3 km from processing equipment site	0												Ī
Criteria			Located no more than 3 meters below the surface				0					0	0	0		Ī
וַבָּ	Water		Accessible by automated systems	•	•	•	0					0	0	0	•	
ב	×		Potential for multiple sources of ice, ice/regolith mix and hydrated minerals	0	•	0	•					•	0	•	0	Ī
_		Qualifying	Distance to resource location can be >5 km	0	•	•	•					•	•	•	•	Ī
ב'			Route to resource location must be (plausibly) traversable	•	•	•	0					•	•	0	•	
ב	ng		~50 sq km region of flat and stable terrain with sparse rock distribution													
ĕ	Engineering	Threshold	1-10 km length scale: <10°													
Engineering	jine		Located within 5 km of landing site location													
ת -	ĵu <u>:</u>		Located in the northern hemisphere													
j		Qualifying	Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith	•	•	•		0	0	0	0				•	
	Civil		Utilitarian terrain features													L
	on		Low latitude													
	Food Production	Qualifying	No local terrain feature(s) that could shadow light collection facilities	•	•	•		•	•	•		0	0		•	L
<u> </u>	Foo	Qualifying	Access to water	0	•	0	•					•	0	•	0	L
and	Pr		Access to dark, minimally altered basaltic sands	•	•	•		0	0	0	0				•	L
2			Potential for metal/silicon	•	•	•									•	Ĺ
<u>Y</u>	_		Potential to be minable by highly automated systems	•	•	•									•	L
ISRU	ပြင္ပ မွ	Threshold	Located less than 3 km from processing equipment site	•												L
	Sili		Located no more than 3 meters below the surface	•	•	•									•	L
	Metal/Silicon Resource		Accessible by automated systems	•	•	•									0	L
	1et Re		Potential for multiple sources of metals/silicon	•	•	•									•	Ĺ
	_	Qualifying	Distance to resource location can be >5 km	•	•	•									•	Ī

Route to resource location must be (plausibly) traversable

1st EZ Workshop for Human Missions to Ma

Current Assets

- Science: HiRISE & CRISM FRT Pair of SROI-1
- Resource: CTX Stereo Pair of Traverse Route
 Between LS & RROI-1/RRO1-2

Potential Future Assets

- Science: Thermal IR Spectra >25μm
- Resource: Higher Resolution Subsurface Radar

Chloride Deposits

- Remnants of potentially habitable environments
- High astrobiological preservation potential

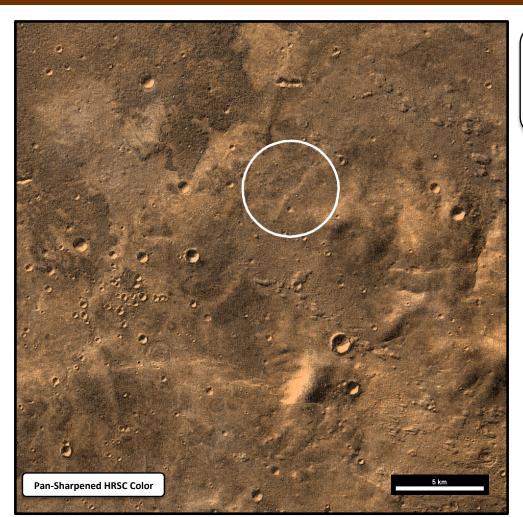
Near-Surface Water Ice

- Significant water resources
- Amazonian climate science
- Additional ROIs representing a variety of other science and resource targets

Backup Slides

- Barbieri, Roberto, et al. "Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications." *Planetary and Space Science* 54.8 (2006): 726-736.
- Osterloo, M. M., F. S. Anderson, V. E. Hamilton, and B. M. Hynek (2010), Geologic context of proposed chloride bearing materials on Mars, J. Geophys. Res., 115, E10012, doi: 10.1029/2010JE003613.
- Sankaranarayanan K, Timofeeff MN, Spathis R, Lowenstein TK, Lum JK (2011) Ancient Microbes from Halite Fluid Inclusions: Optimized Surface Sterilization and DNA Extraction. PLoS ONE 6(6): e20683. doi:10.1371/journal.pone.0020683.
- Souness, Colin, et al. "An inventory and population-scale analysis of martian glacier-like forms." *Icarus* 217.1 (2012): 243-255.

Prioritization List of EZ Data Needs


1st EZ Workshop for Human Missions to Mars

Science

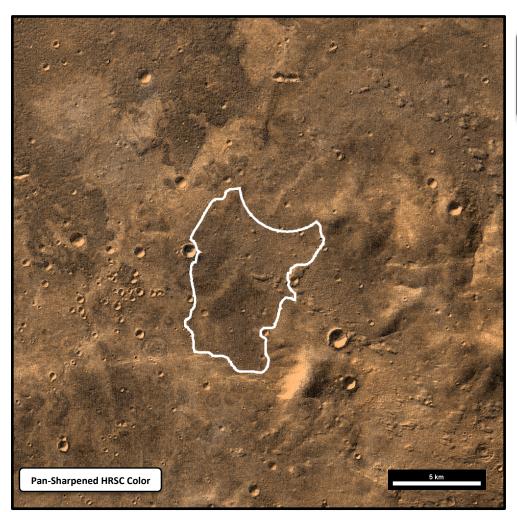
- HiRISE & CRISM FRT Pair of SROI-1
 - Verify stratigraphic relationship with volcanic unit and confirm cooccurrence of phyllosilicates
- HiRISE & CRISM FRT Pair of SROI-3
 - Verfify stratigraphic relationship with volcanic unit and confirm co-occurrence of phyllosilicates

Resource

- 1) CTX Stereo Pair of Traverse Route Between LS & RROI-1/2
 - Verify plausible traverse route
- 2) HiRISE & CRISM FRT Pair of RROI-2
 - Verify presence of lineated valley fill
- 3) HiRISE image(s) of Traverse Route Between LS & RROI-1/2
 - Plot plausible traverse route

Location: -37.330N, 350.648E

Elevation: 1,210m


Coverage: THEMIS, HRSC, CTX

- Landing site of ~25km²
- Meets all landing site requirements
- Intersects SROI-5 and RROI-5

Habitation Site

1st EZ Workshop for Human Missions to Mars

Location: -37.427N, 350.590E Elevation: 1,189m – 1,246m Coverage: THEMIS, HRSC, CTX

- Habitation site of ~50km²
- Meets all habitation site requirements
- Adjacent to landing site